Junos MPLS Fundamentals

Course information
Price: Please Call
Day(s): 2
Course Code: JMF
Delivery Method: Public Classroom


This two-day course is designed to provide students with a solid foundation on Multiprotocol Label Switching (MPLS).
After introducing concepts such as MPLS forwarding and the structure of the MPLS header, the course will delve into the configuration and operation of the two main label distribution protocols, RSVP and LDP. Special emphasis is given to the central topics of traffic engineering and MPLS traffic protection, including fast reroute, link/node protection, and LDP Loop-Free Alternate.

The concepts are put into practice with a series of in-depth hands-on labs, which will allow participants to gain experience in configuring and monitoring MPLS on Junos OS devices.

This course is based on the Junos OS Release 15.1R2.9.


Students should have intermediate-level networking knowledge and should be familiar with the Junos OS command-line interface (CLI). Students should also attend the Introduction to the Junos Operating System (IJOS), Junos Routing Essentials (JRE), Junos Intermediate Routing (JIR), and Junos Service Provider Switching (JSPX) courses prior to attending this class.



Day 1
Chapter 1: Course Introduction

Chapter 2:  MPLS Fundamentals

  • MPLS Foundation
  • Terminology
  • MPLS Configuration
  • MPLS Packet Forwarding
  • Lab: MPLS Fundamentals

Chapter 3: Label Distribution Protocols

  • Label Distribution Protocols
  • RSVP
  • LDP
  • Lab: Label Distribution Protocols

Chapter 4: Routing Table Integration

  • Mapping Next-Hops to LSPs
  • Route Resolution Example
  • Route Resolution Summary
  • IGP Passive Versus Next-Hop Self for BGP Destinations

Day 2
Chapter 5: Constrained Shortest Path First

  • RSVP Behavior Without CSPF
  • CSPF Algorithm
  • CSPF Tie Breaking
  • Administrative Groups
  • Interarea Traffic Engineered LSPs
  • Lab: CSPF

Chapter 6:  Traffic Protection and LSP Optimization

  • Default Traffic Protection Behavior
  • Primary and Secondary LSPs
  • Fast Reroute
  • RSVP Link Protection
  • LDP LFA and Link Protection
  • LSP Optimization
  • Lab: Traffic Protection

Chapter 7: Fate Sharing

  • Junos OS Fate Sharing
  • SRLG
  • Extended Admin Groups
  • Lab: Fate Sharing

Chapter 8: Miscellaneous MPLS Features

  • Forwarding Adjacencies
  • Policy Control over LSP Selection
  • LSP Metrics
  • Automatic Bandwidth
  • Container LSPs
  • TTL Handling
  • Explicit Null Configuration
  • MPLS Pings
  • Lab: Miscellaneous MPLS Features


After successfully completing this course, you should be able to:

  • Describe the history and rationale for MPLS, as well as its basic terminology.
  • Explain the MPLS label operations (push, pop, swap) and the concept of label-switched path (LSP).
  • Describe the configuration and verification of MPLS forwarding.
  • Describe the functionalities and operation of RSVP and LDP.
  • Configure and verify RSVP-signaled and LDP-signaled LSPs.
  • Select and configure the appropriate label distribution protocol for a given set of requirements.
  • Describe the default Junos OS MPLS traffic engineering behavior.
  • Explain the Interior Gateway Protocol (IGP) extensions used to build the Traffic Engineering Database (TED).
  • Describe the Constrained Shortest Path First (CSPF) algorithm, its uses, and its path selection process.
  • Describe administrative groups and how they can be used to influence path selection.
  • Describe the default traffic protection behavior of RSVP-signaled LSPs.
  • Explain the use of primary and secondary LSPs.
  • Describe the operation and configuration of fast reroute.
  • Describe the operation and configuration of link and node protection.
  • Describe the operation and configuration of LDP loop-free alternate.
  • Describe the LSP optimization options.
  • Explain LSP priority and preemption.
  • Describe the behavior of fate sharing.
  • Describe how SRLG changes the CSPF algorithm when computing the path of a secondary LSP.
  • Explain how extended admin groups can be used to influence path selection.
  • Explain the purpose of several miscellaneous MPLS features.


Target Audience

This course benefits individuals responsible for configuring and monitoring devices running the Junos OS.


Public Classroom Schedule

Dates available on request. Please contact us.

Course description

Download a PDF document of the complete course description: Junos MPLS Fundamentals

Dates for all Delivery Methods
Date & Location Language Ver Delivery Method
14 Aug - 15 Aug, 2017
Virtual Training
EN Virtual Learning
05 Feb - 06 Feb, 2018
Virtual Training
EN Virtual Learning
All course dates
Date & Location Language Ver
06 Jun - 07 Jun, 2017 Nieuwegein (Iepenhoeve 5) Public Classroom
08 Jun - 09 Jun, 2017 Amsterdam Public Classroom
15 Jun - 16 Jun, 2017 Tromsø, Global Knowledge AS Public Classroom
22 Jun - 23 Jun, 2017 Oslo Public Classroom
26 Jun - 27 Jun, 2017 RUEIL VICTOR HUGO Public Classroom
14 Aug - 15 Aug, 2017 Wokingham Public Classroom
14 Aug - 15 Aug, 2017 Virtual Training Centre EN Public Classroom
21 Aug - 22 Aug, 2017 Zoetermeer (Centrum West 21) Public Classroom
04 Sep - 05 Sep, 2017 Nieuwegein (Iepenhoeve 5) Public Classroom
14 Sep - 15 Sep, 2017 Oslo Public Classroom
09 Nov - 10 Nov, 2017 Amsterdam (Kingsfordweg 43) Public Classroom
04 Dec - 05 Dec, 2017 RUEIL VICTOR HUGO Public Classroom
27 Dec - 28 Dec, 2017 Nieuwegein (Iepenhoeve 5) Public Classroom
05 Feb - 06 Feb, 2018 Wokingham Public Classroom

This item has been added to your basket